A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells.
نویسندگان
چکیده
Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.
منابع مشابه
Investigation of oxidative stress defenses of Neisseria gonorrhoeae by using a human polymorphonuclear leukocyte survival assay.
Neisseria gonorrhoeae has well-characterized oxidative stress defense systems that protect against oxidative killing in in vitro assays. In contrast, mutant strains of N. gonorrhoeae lacking oxidative stress defenses are identical to the wild type when tested in an ex vivo survival assay using human polymorphonuclear leukocytes.
متن کاملAttachment role of gonococcal pili. Optimum conditions and quantitation of adherence of isolated pili to human cells in vitro.
Gonoccocal pili facilitate attachment of virulent Neisseria gonorrhoeae to human cells. To characterize this attachment function, purified gonococcal pili isolated from four strains possessing antigenically distinct pili were radiolabeled with 125I and used to measure the attachment of pili to various human cells in vitro. Human buccal and cervical-vaginal mucosal epithealial cells, fallopian t...
متن کاملNeisseria gonorrhoeae Elicits Extracellular Traps in Primary Neutrophil Culture While Suppressing the Oxidative Burst
UNLABELLED Neisseria gonorrhoeae (the gonococcus) causes gonorrhea and is uniquely adapted to survive within the human reproductive tract. Gonococci evade host immune surveillance in part by varying their pili and opacity-associated proteins. These variable surface antigens influence interactions with host epithelial and immune cells. A potent polymorphonuclear leukocyte (PMN) response is a hal...
متن کاملRole of pili in the virulence of Neisseria gonorrhoeae.
Gonococci of the colonial types that are associated with virulence, types 1 and 2, have pili that enable the bacteria both to attach in vitro to human epithelial cells and to resist phagocytosis by polymorphonuclear leukocytes. These piliated gonococci also agglutinate various mammalian and chicken erythrocytes. Gonococci of an avirulent colonial type, i.e., type 4, have no pili and neither att...
متن کاملHost cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal
The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 210 8 شماره
صفحات -
تاریخ انتشار 2014